Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
5.
J Exp Med ; 219(12)2022 12 05.
Article in English | MEDLINE | ID: covidwho-2051192

ABSTRACT

Individuals who receive a third mRNA vaccine dose show enhanced protection against severe COVID-19, but little is known about the impact of breakthrough infections on memory responses. Here, we examine the memory antibodies that develop after a third or fourth antigenic exposure by Delta or Omicron BA.1 infection, respectively. A third exposure to antigen by Delta breakthrough increases the number of memory B cells that produce antibodies with comparable potency and breadth to a third mRNA vaccine dose. A fourth antigenic exposure with Omicron BA.1 infection increased variant-specific plasma antibody and memory B cell responses. However, the fourth exposure did not increase the overall frequency of memory B cells or their general potency or breadth compared to a third mRNA vaccine dose. In conclusion, a third antigenic exposure by Delta infection elicits strain-specific memory responses and increases in the overall potency and breadth of the memory B cells. In contrast, the effects of a fourth antigenic exposure with Omicron BA.1 are limited to increased strain-specific memory with little effect on the potency or breadth of memory B cell antibodies. The results suggest that the effect of strain-specific boosting on memory B cell compartment may be limited.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Memory B Cells , RNA, Messenger/genetics , Vaccines, Synthetic , mRNA Vaccines
6.
Front Public Health ; 9: 728768, 2021.
Article in English | MEDLINE | ID: covidwho-1497173

ABSTRACT

Aim: The aim of this study was to analyze the changes in incidence of notifiable infectious diseases in China under the prevention and control measures of COVID-19. Methods: Using descriptive epidemiological methods, data were collected from the official website of the Health Commission of the People's Republic of China, and the prevalence characteristics of notifiable infectious diseases in the country in 2020 were analyzed and compared with the historical data in 2019. Monthly reporting data on influenza and tuberculosis from 2015 to 2019 were also collected. Results: Except for COVID-19, the total number of notifiable infectious diseases cases in 2020 was 6,366,176, a decrease of 41.38% year-on-year compared with 2019. Category B and C notifiable infectious diseases decreased by 14.84 and 54.98% year-on-year, respectively (P < 0.01). The top three incidence rates were influenza (87.63 cases/100,000), hepatitis B (81.36 cases/100,000) and other infectious diarrhea (76.33 cases/100,000). Three types of diseases with the largest decline were influenza (-2,280,502 cases), hand-foot-mouth disease (-1,174,588 cases), and other infectious diarrhea diseases (-275,746 cases). Compared with 2019, respiratory infectious diseases were reported to be in the largest decline in 2020, followed by intestinal infectious diseases, blood-borne and sexually transmitted diseases, natural foci, and insect-borne infectious diseases. The monthly reported incidences of influenza and tuberculosis in 2020 were lower than the average of the previous 5 years. Conclusion: In 2020, the incidence of most notifiable infectious diseases in China showed a downward trend, non-pharmaceutical interventions (NPIs)such as the wearing of masks, frequent hand-washing, more ventilation, less gathering, etc, played an positive role in the prevention and control of respiratory and intestinal infectious diseases. The various public health intervention strategies and measures adopted by China to contain COVID-19 can provide a reference for the prevention and control of infectious diseases in other countries.


Subject(s)
COVID-19 , Communicable Diseases , China/epidemiology , Communicable Diseases/epidemiology , Humans , Incidence , SARS-CoV-2
7.
Clin Transl Immunology ; 10(2): e1251, 2021.
Article in English | MEDLINE | ID: covidwho-1084626

ABSTRACT

OBJECTIVES: We aimed to gain an understanding of the paradox of the immunity in COVID-19 patients with T cells showing both functional defects and hyperactivation and enhanced proliferation. METHODS: A total of 280 hospitalised patients with COVID-19 were evaluated for cytokine profiles and clinical features including viral shedding. A mouse model of acute infection by lymphocytic choriomeningitis virus (LCMV) was applied to dissect the relationship between immunological, virological and pathological features. The results from the mouse model were validated by published data set of single-cell RNA sequencing (scRNA-seq) of immune cells in bronchoalveolar lavage fluid (BALF) of COVID-19 patients. RESULTS: The levels of soluble CD25 (sCD25), IL-6, IL-8, IL-10 and TNF-α were higher in severe COVID-19 patients than non-severe cases, but only sCD25 was identified as an independent risk factor for disease severity by multivariable binary logistic regression analysis and showed a positive association with the duration of viral shedding. In agreement with the clinical observation, LCMV-infected mice with high levels of sCD25 demonstrated insufficient anti-viral response and delayed viral clearance. The elevation of sCD25 in mice was mainly contributed by the expansion of CD25+CD8+ T cells that also expressed the highest level of PD-1 with pro-inflammatory potential. The counterpart human CD25+PD-1+ T cells were expanded in BALF of COVID-19 patients with severe disease compared to those with modest disease. CONCLUSION: These results suggest that high levels of sCD25 in COVID-19 patients probably result from insufficient anti-viral immunity and indicate an expansion of pro-inflammatory T cells that contribute to disease severity.

8.
Journal of Clinical Investigation ; 130(12):6588-6599, 2020.
Article in English | ProQuest Central | ID: covidwho-1021206

ABSTRACT

BACKGROUND. Marked progress is achieved in understanding the physiopathology of coronavirus disease 2019 (COVID-19), which caused a global pandemic. However, the CD4· T cell population critical for antibody response in COVID-19 is poorly understood. METHODS. In this study, we provided a comprehensive analysis of peripheral CD4· T cells from 13 COVID-19 convalescent patients, defined as confirmed free of SARS-CoV-2 for 2 to 4 weeks, using flow cytometry and magnetic chemiluminescence enzyme antibody immunoassay. The data were correlated with clinical characteristics. RESULTS. We observed that, relative to healthy individuals, convalescent patients displayed an altered peripheral CD4· T cell spectrum. Specifically, consistent with other viral infections, cTfh1 cells associated with SARS-CoV-2-targeting antibodies were found in COVID-19 covalescent patients. Individuals with severe disease showed higher frequencies of Tem and Tfh-em cells but lower frequencies of Tcm, Tfh-cm, Tfr, and Tnaive cells, compared with healthy individuals and patients with mild and moderate disease. Interestingly, a higher frequency of cTfh-em cells correlated with a lower blood oxygen level, recorded at the time of admission, in convalescent patients. These observations might constitute residual effects by which COVID-19 can impact the homeostasis of CD4· T cells in the long-term and explain the highest ratio of class-switched virus-specific antibody producing individuals found in our severe COVID-19 cohort. CONCLUSION. Our study demonstrated a close connection between CD4· T cells and antibody production in COVID-19 convalescent patients. FUNDING. Six Talent Peaks Project in Jiangsu Province and the National Natural Science Foundation of China (NSFC).

9.
J Clin Invest ; 130(12): 6588-6599, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-1013100

ABSTRACT

BACKGROUNDMarked progress is achieved in understanding the physiopathology of coronavirus disease 2019 (COVID-19), which caused a global pandemic. However, the CD4+ T cell population critical for antibody response in COVID-19 is poorly understood.METHODSIn this study, we provided a comprehensive analysis of peripheral CD4+ T cells from 13 COVID-19 convalescent patients, defined as confirmed free of SARS-CoV-2 for 2 to 4 weeks, using flow cytometry and magnetic chemiluminescence enzyme antibody immunoassay. The data were correlated with clinical characteristics.RESULTSWe observed that, relative to healthy individuals, convalescent patients displayed an altered peripheral CD4+ T cell spectrum. Specifically, consistent with other viral infections, cTfh1 cells associated with SARS-CoV-2-targeting antibodies were found in COVID-19 covalescent patients. Individuals with severe disease showed higher frequencies of Tem and Tfh-em cells but lower frequencies of Tcm, Tfh-cm, Tfr, and Tnaive cells, compared with healthy individuals and patients with mild and moderate disease. Interestingly, a higher frequency of cTfh-em cells correlated with a lower blood oxygen level, recorded at the time of admission, in convalescent patients. These observations might constitute residual effects by which COVID-19 can impact the homeostasis of CD4+ T cells in the long-term and explain the highest ratio of class-switched virus-specific antibody producing individuals found in our severe COVID-19 cohort.CONCLUSIONOur study demonstrated a close connection between CD4+ T cells and antibody production in COVID-19 convalescent patients.FUNDINGSix Talent Peaks Project in Jiangsu Province and the National Natural Science Foundation of China (NSFC).


Subject(s)
Antibodies, Viral/immunology , Antibody Formation , CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Convalescence , SARS-CoV-2/immunology , T-Lymphocyte Subsets/immunology , Adult , Aged , Antibodies, Viral/blood , CD4-Positive T-Lymphocytes/metabolism , COVID-19/blood , Female , Humans , Male , Middle Aged , SARS-CoV-2/metabolism , T-Lymphocyte Subsets/metabolism
10.
Sustain Cities Soc ; 61: 102413, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-663693

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has imposed a significant impact on social and economic activities. As a high infectious pathogen, the existence of SARS-CoV-2 in public space is very important for its transmission. During the COVID-19 pandemic, hospitals are the main places to deal with the diseases. In this work, we evaluated the exposure risk of SARS-CoV-2 in hospital environment in order to protect healthcare workers (HCWs). Briefly, air and surface samples from 6 different sites of 3 hospitals with different protection levels were collected and tested for the SARS-CoV-2 nucleic acid by reverse transcription real-time fluorescence PCR method during the COVID-19 epidemic. We found that the positive rate of SARS-CoV-2 nucleic acid was 7.7 % in a COVID-19 respiratory investigation wards and 82.6 % in a ICUs with confirmed COVID-19 patients. These results indicated that in some wards of the hospital, such as ICUs occupied by COVID-19 patients, the nucleic acid of SARS-CoV-2 existed in the air and surface, which indicates the potential occupational exposure risk of HCWs. This study has clarified retention of SARS-CoV-2 in different sites of hospital, suggesting that it is necessary to monitor and disinfect the SARS-CoV-2 in hospital environment during COVID-19 pandemic, and will help to prevent the iatrogenic infection and nosocomial transmission of SARS-CoV-2 and to better protect the HCWs.

SELECTION OF CITATIONS
SEARCH DETAIL